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Abstract
Earlier neutron powder diffraction measurements on the CsCl compound TbMg
showed that a canted magnetic structure is stabilized at T = 4.2 K. This
structure mixes ferromagnetic and antiferromagnetic, 〈 1

2 0 0〉, components.
Accounting for the anisotropy, several consistent models of structures could
be proposed. In order to identify the best one, we performed x-ray diffraction
measurements on a single crystal. A set of charge satellites originating from
multipolar 4f scattering and related to the 〈 1

2 0 0〉 wavevectors were observed.
Analysing the experimental data, within the framework recently proposed for
multipolar scattering in cubic systems, a model is selected for the magnetic
structure of TbMg.

1. Introduction

We have in recent papers discussed the relation between the magnetic structure and 4f
multipoles of second, fourth and sixth orders in rare-earth cubic systems [1, 2]. The
development of the analysis, relating the asphericity of the 4f charge distribution to the
magnetism, provides an alternative way to study the magnetic order by means of x-ray
scattering. 4f multipolar x-ray scattering has the considerable advantage, as compared
with x-ray magnetic scattering, of significant scattering amplitudes. Using NdMg as a test
compound, we showed that these intensities can be measured within reasonable counting
times, despite the intrinsic weakness of the neodymium multipolar scattering amplitudes [3].
However, as the relation between charge and magnetic order is not bijective, the multipolar
structure that may actually be determined is in general consistent with several magnetic
models. Therefore, multipolar x-ray scattering cannot be used alone for a magnetic structure
determination. This requires prior knowledge of the magnetic wavevector, and then allows one
to select the best among several magnetic models. For rare-earth ions with large multipolar
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scattering amplitudes, such as Tb3+, this technique may become a valuable alternative to the
neutron scattering technique for single crystal. Indeed, in some cases neutron studies may
be too delicate due, for instance, to absorption problems or to difficulties in obtaining large
enough single crystals.

TbMg appeared to us a very suitable system for testing the x-ray multipolar scattering
technique applied to the determination of a magnetic structure. Earlier neutron powder
diffraction experiments showed the existence at low temperature of a canted magnetic structure,
with antiferromagnetic wavevectors from the 〈 1

2 0 0〉 star. Several models were found to be
consistent with experiments and the actual structure remained undetermined. Moreover,
the compounds in the rare-earth magnesium series show an unusual, among rare-earth
intermetallics, reluctance to oxidize. This reduces the contribution of the oxidized surface
to the scattering phenomena and favours the observation of weak multipolar reflections.

In the following, we first recall the magnetic properties of TbMg and the models of
magnetic structures consistent with the neutron powder diffraction experiment. Second, we
present our x-ray scattering experiments, their results and subsequent analysis.

2. TbMg: the current state of knowledge

2.1. Magnetic order in R–Mg compounds

TbMg belongs to the same series of CsCl compounds as the multiaxial antiferromagnet
NdMg. Unlike the latter, however, TbMg is reported to order not antiferromagnetically, but
ferromagnetically at TC = 81 K [4]. It turns out that this follows a trend in the series, in which
elements with light rare earths order antiferromagnetically, whereas the ones with heavy rare
earths, including TbMg, exhibit a Curie temperature [4,5]. There are, however, the exceptions
of DyMg and TmMg; DyMg is reported to be an antiferromagnet, whereas for TmMg no
order was observed down to 1.5 K [6]. For the ferromagnetic elements, the antiferromagnetic
couplings remain competitive and, at low temperature, canted structures mixing ferromagnetic
and antiferromagnetic components were proposed for GdMg, TbMg, HoMg and ErMg. For
GdMg and TbMg this was supported by powder neutron diffraction results at T = 4.2 K [7,8],
which showed the existence of 〈 1

2 0 0〉 antiferromagnetic wavevectors. Such canted magnetic
structures cannot be explained within the framework of isotropic bilinear exchange associated
with, in the case of TbMg, magnetocrystalline anisotropy. Bilinear exchange requires
that the magnetic wavevectors correspond, at the transition temperature, to the maximum
of the magnetic coupling dispersion curve, in agreement with the susceptibility χ(q) of
the conduction electrons which mediate the interactions. In the case of antiferromagnetic
structures with long periods, additional harmonics wavevectors may appear while decreasing
the temperature, to ‘square up’ the structure. Obviously, such a mechanism cannot apply
for the simple 〈 1

2 0 0〉 wavevectors in TbMg and GdMg. The simultaneous observation of
ferromagnetism and antiferromagnetism would then need the bilinear dispersion curve to take
the same value at two non-equivalent points of the reciprocal lattice, [0 0 0] and [ 1

2 0 0]. This
would be a very striking coincidence, and a more reasonable way to explain the occurrence
of those structures is on the basis of the interference of additional pair interactions in the
Hamiltonian of the system. Considering anisotropic bilinear exchange couplings appears to
be insufficient for explaining the occurrence of a canted structure down to 0 K [9]. As for
other kinds of multiaxial structure, the stabilization of a canted structure may be ascribed to the
interference of quadrupolar pair interactions. The associated energy terms are of higher order
than the bilinear interaction ones. Therefore, in the case of a second-order phase transition,
they cannot interfere at TC, but become relevant with the increase of the magnetic order
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Figure 1. Sketches of the high-symmetry models of the structure, I, II and III, compatible with the
T = 4.2 K powder neutron diffraction results for TbMg.

parameter. Then, the system undergoes a second transition which brings in an additional,
antiferromagnetic, component. Such a mechanism has been proposed for the canted structure
of the NaCl-type compound HoP [9].

In the case of the gadolinium S state, one would expect all orbital couplings to cancel.
Nevertheless, even in this particular case, orbital contributions to the interaction energy can
exist due to the orbital character of the conduction electrons involved in the RKKY coupling [9].
Consequently, a scenario similar to that for HoP can develop in gadolinium compounds. This
has been confirmed for GdMg, by means of powder neutron diffraction measurements at
variable temperature [7], as well as specific heat measurements [10]. Indeed, in GdMg, the
antiferromagnetic component does not appear at TC = 110 K but at Tcant = 85 K.

Equivalent experimental studies are lacking for the case of TbMg and the occurrence of a
second phase transition at Tcant, related to the emergence of the antiferromagnetic component,
is not supported. As terbium has a large orbital momentum, quadrupolar couplings should
play a significant role, as in HoP, in the stabilization of the canted magnetic structure. Prior
to developing such a quadrupolar interactions analysis for TbMg, all uncertainties about the
low-temperature magnetic structure of this compound have to be removed. In view of this,
one can take advantage of the large orbital moment of terbium in performing x-ray multipolar
scattering experiments.

2.2. Magnetic models for the low-temperature state of TbMg

Let us first recall the results of the powder neutron diffraction experiments. For T =
4.2 K, the spectra show the coexistence of ferromagnetism with antiferromagnetism
associated with wavevectors from the 〈 1

2 0 0〉 star. At this temperature, the ferromagnetic
and antiferromagnetic amplitudes represent 5.2 µB per terbium, the antiferromagnetic
component(s) being perpendicular to its (their) wavevector(s). At this rather low temperature,
in order to minimize the bilinear interaction energy for the commensurate wavevectors involved,
q = 0 and q ∈ 〈 1

2 0 0〉, the moments should be of identical (maximum) amplitude on all sites.
In addition, due to the non-zero orbital moment of terbium, the magnetic moment directions
should follow the crystal-field anisotropy and, therefore, belong to a unique crystallographic
star compliant with the cubic system (〈100〉, 〈110〉 or 〈111〉).

According to these criteria, only three magnetic structures can be retained, referred to
as I, II and III (an exhaustive list of these models mixing antiferromagnetic, 〈 1

2 0 0〉, and
ferromagnetic components can be found in [11]). These three structures are represented in
figure 1 and their respective Fourier descriptions detailed in table 1.

Given the Fourier description of a high-symmetry magnetic structure, the method
presented in [2] allows the determination of its 4f multipolar counterpart. That is, one can
determine which multipolar components should be non-zero and their associated wavevectors.
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Table 1. Fourier description of the structure models proposed for TbMg in terms of magnetic,
quadrupolar, hexadecapolar and hexacontatetrapolar components. The total magnetic moment
amplitude is one unit. The only difference between models II and III lies in the association between
the antiferromagnetic component and the 〈 1

2 0 0〉 wavevector.

Model Wavevectors Magnetic Quadrupolar Hexadecapolar Hexacontatetrapolar

I [0 0 0] ( 1
2

1
2 0) 〈O0

2 〉 〈Oγ,1
4 〉 〈Oγ,1

6 〉
[0 0 1

2 ] ( 1
2 − 1

2 0) 〈O2
2 〉 〈Oγ,2

4 〉 〈Oγ,2
6 〉

II [0 0 0] ( 1√
2 0 0) 〈O0

2 〉 〈Oγ,1
4 〉 〈Oγ,1

6 〉
[0 0 1

2 ] (0 1√
2 0) 〈Pxy〉 〈Oε,1

4 〉 〈Oε1,1
6 〉, 〈Oε2,1

6 〉
III [0 0 0] ( 1√

2 0 0) 〈O0
2 〉 〈Oγ,1

4 〉 〈Oγ,1
6 〉

[ 1
2 0 0] (0 1√

2 0) 〈Pxy〉 〈Oε,1
4 〉 〈Oε1,1

6 〉, 〈Oε2,1
6 〉

The results of this analysis applied to the three magnetic models are reported in table 1.
The listed, ordered, cubic multipolar components match the definitions given by Morin and
Schmitt [12]. Due to the presence in all the magnetic models of a single 〈 1

2 0 0〉 wavevector,
the only zone-boundary 4f charge wavevector is identical to this antiferromagnetic one. This
is in contrast with the NdMg multiaxial structure for which two antiferromagnetic 〈 1

2 0 0〉
wavevectors result in a single zone-boundary, 〈 1

2
1
2 0〉, charge wavevector. As regards the

use of multipolar x-ray diffraction, one can expect to observe charge satellites for scattering
vectors of the { 1

2 (2n + 1)mp} type, where (n,m, p) are integers. Confusion of such charge
reflections with magnetic ones is highly unlikely because the multipolar reflections are three
or four orders of magnitude larger than the non-resonant magnetic x-ray ones [1]. At this
point, the observation of such { 1

2 (2n + 1)mp} charge satellites is not selective as regards the
magnetic models and a more detailed analysis of the multipolar scattering is necessary. This is
achieved by writing down the multipolar scattering amplitudes for the three models, according
to the expressions given in [2]. These scattering amplitudes are reported in table 2. Model I
has ordered 〈 1

2 0 0〉 multipolar components of the �3 type and therefore fundamentally differs
from models II and III, whose 〈 1

2 0 0〉 ordered multipoles are of the �5 type. This difference
manifests itself in the conditions of existence for the reflections reported in the last column of
table 2. The distinction between models II and III is more delicate, since they have common
�5-type ordered components. However, they differ in the association of these components
with the 〈 1

2 0 0〉 wavevector. According to the existence conditions reported in the last column
of table 2, for integers m and n:

(i) { 1
2 (2n + 1) 0 0} reflections cancel for all the three models;

(ii) { 1
2 (2n + 1)m ±m} reflections cancel for model I only;

(iii) { 1
2 (2n + 1)m 0} reflections cancel for model II but not for model III (if all domains are

present).

It should be then possible to identify the real structure by measuring a set of reflections in
which these three groups would be represented.

Note that, as regards the 4f charge, the three models determine a tetragonal symmetry
lowering related to the emergence of �3(γ )multipolar components at the zone centre (table 1).
The magnetoelastic couplings will force a spontaneous magnetostriction of the same symmetry,
that is a tetragonal strain mode εγ1 [12]. Obviously, as this behaviour is common to all
three models, magnetostriction measurements cannot help to distinguish between them. If
the magnetoelastic couplings are strong enough, they should determine a splitting of the lattice
reflections within the ordered range, as has been observed for NdMg [3].
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Table 2. Multipolar x-ray scattering amplitudes and reflection conditions for the particular domains
representing models I, II and III here. Q = [h k l] is the scattering vector. αJ , βJ and γJ are the
Stevens multiplication factors [13]. F2(Q), F4(Q) and F6(Q) are the second-, fourth- and sixth-
order multipolar scattering form factors [1].

Model,
wavevector Multipolar x-ray scattering amplitude Condition

I,
[0 0 1

2 ] (h2 − k2)




3
2
αJ F2(Q)

Q2 〈O2
2 〉 + 5

8
√

3
βJ F4(Q)

Q4 (Q2 − 7l2)〈Oγ,2
4 〉

+ 7
√

3
16

γJ F6(Q)

Q6 (Q4 − 7Q2l2 + 11l4 − 11h2k2)〈Oγ,2
6 〉




l = (2n + 1)/2,
and h2 
= k2

II,
[0 0 1

2 ] hk




6 αJ F2(Q)

Q2 〈Pxy〉 + 5 βJ F4(Q)

Q4 (7l2 −Q2)〈Oε,1
4 〉

+ γJ F6(Q)

Q6

[
105
16 (33l4 − 18Q2l2 +Q4)〈Oε1,1

6 〉
+ 231

32 (3h
4 − 10h2k2 + 3k4)〈Oε2,1

6 〉
]




l = (2n + 1)/2
and hk 
= 0

III,
[ 1

2 0 0] hk




6 αJ F2(Q)

Q2 〈Pxy〉 + 5 βJ F4(Q)

Q4 (7l2 −Q2)〈Oε,1
4 〉

+ γJ F6(Q)

Q6

[
105
16 (33l4 − 18Q2l2 +Q4)〈Oε1,1

6 〉
+ 231

32 (3h
4 − 10h2k2 + 3k4)〈Oε2,1

6 〉
]




h = (2n + 1)/2
and k 
= 0

3. X-ray diffraction experiment

3.1. Experimental conditions

Unlike the R–Mg compounds with light rare earths (R), the heavy-rare-earth ones melt
incongruently and the TbMg crystals which were available at the start of this study were
of too poor a quality (inclusions of TbMg2) for any neutron or x-ray scattering study. New
attempts at synthesis were performed in order to obtain crystals of sufficient quality and size
for the x-ray scattering study. The sample used in this experiment is part of an ingot processed
by the Bridgman technique in a sealed tantalum crucible. In order to start the solidification at
about the peritectic point of TbMg, the starting concentration was shifted from stoichiometry
according to the metallurgical phase diagram published by Saccone et al [14]. The Lauë
patterns showed that the tip of the ingot was a well crystallized single crystal, but that on going
along the ingot the quality decreased rapidly. Optical microscopy showed that this deterioration
was related to the presence of inclusions growing dendritically which, according to the phase
diagram, should be of TbMg2. A small single crystal was spark cut out of the tip and shaped
into a fairly rectangular plate of dimensions 5 × 3 × 0.5 mm3. The 5 × 3 mm2 surface later
exposed to the x-ray beam is perpendicular to a fourfold axis. To remove any defect arising
from the spark cutting, as well as oxide, this surface was chemically polished using an ethanol
solution of nitric acid. The quality of the surface was then checked by means of Lauë patterns.

In the case of NdMg, it appeared that the partitioning of the sample into domains was
critical as regards the intensities of the reflections. In order to avoid dispersion of the scattered
intensities over all the 〈 1

2 0 0〉 branches and, also, to simplify the analysis, we decided to
take advantage of the ferromagnetic component of the structure for selecting domains. To
achieve this domain selection, the sample was glued such that it closed a small magnetic
circuit consisting in two soft iron pieces and a Nd2Fe14B magnet (inset of figure 2). The field
thus applied to the sample was directed along the [1 0 0] fourfold direction which approximately
corresponds to its largest dimension. The efficiency of this magnetic circuit was checked by
zero-field magnetization measurements under variable temperature (figure 2). If the TbMg
sample is not saturated by the field, its contribution to the magnetic circuit’s dipole is governed
by the demagnetizing effect. Therefore, this contribution is essentially shape dependent but
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Figure 2. The thermal dependence of the sample’s magnetic circuit moment along the [1 0 0]
direction. Inset: a sketch of the sample’s magnetic circuit with: in grey, the Nd2Fe14B magnet of
magnetization M ; in black, the soft iron pieces; and, in white, the TbMg single crystal with its
[1 0 0] and [0 0 1] reference directions.

not temperature dependent (in this temperature range, the thermal dependence of the Nd2Fe14B
magnetization can be neglected). Experimentally, the observed decrease of the magnetic circuit
dipole, below TC, seems to follow the thermal dependence of the ferromagnetic component of
TbMg. This, together with the still huge leakage of the circuit at low temperature, is indicative
of the magnetically saturated state of the sample at all temperatures below TC. Thus, one can
safely consider that at the centre of the sample, exposed to x-rays, the remaining domains are
those favoured by the applied field.

The x-ray experiment was performed at the ESRF, BM2 beamline, using the seven-circle
goniometer and a closed-cycle helium refrigerator for adjusting the sample temperature
between 21 and 300 K. As very weak scattering intensities had to be measured, the signal-to-
background ratio had to be optimized. In view of this, an x-ray wavelength λ = 1.0912 Å—and
thus a photon energy far above the terbium L2,3 absorption edges—was used. The size of the
incident x-ray beam, at the sample’s position, was less than 0.1 mm2. A Ge(111) analyser
was mounted in front of the detector, both to decrease the background level and to improve
the q-space resolution of the experiments. This latter precaution avoids the spreading of
strong parasitic reflections from the sample surface which could hide the multipolar reflections.
The sample was mounted in the refrigerator with the [0 0 1] axis vertical for zero θ - and χ -
angles (inset of figure 2). The [1 0 0] direction corresponded to the field provided by the
magnetic circuit, this direction being perpendicular to the incident beam for zero azimuthal
φ-angle. Within these orientation conditions, for an effective domain selection, new restrictive
conditions for the existence of 〈 1

2 0 0〉 multipolar reflections could be established. They appear
in table 3 together with the zone-boundary wavevectors of the field-selected domains for the
three models of the structure.

3.2. Measurements

At T = 21 K, scanning lattice reflections such as [0 0 4], [3 0 3] and [2 2̄ 2], it appeared that the
low-temperature strain was not large enough to resolve the peaks associated with the different,
presumed tetragonal, domains. Consequently, a low-temperature orientation matrix was
established, considering the crystallographic system as still cubic. Thereafter, we proceeded
by testing the accessibility and background level for { 1

2 (2n + 1)mp} scattering vectors. This
was done in order to establish a list of multipolar reflections which could be measured with
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Figure 3. Some illustrative examples of (θ, 2θ) scans across { 1
2 (2n + 1)mp} positions. The

full curves are Lorentzian fits (whenever possible). Reflection [2 1̄ 5
2 ] illustrates the difficulty of

measuring such weak charge satellites in the vicinity of parasitic reflections from the sample’s
surface.

Table 3. Reflection conditions, for a scattering vector Q = [h k l], according to the three models
and for the domains selected by a magnetic field applied along [1 0 0]. n is an integer and ‘XOR’
stands for ‘exclusive or’.

Model Wavevector Number of domains Reflection if:

I [0 0 1
2 ] 2 l = (2n + 1)/2 and h2 
= k2

[0 1
2 0] 2 k = (2n + 1)/2 and h2 
= l2

II [0 0 1
2 ] 1 k = (2n + 1)/2 and hl 
= 0

[0 1
2 0] 1 l = (2n + 1)/2 and hk 
= 0

III [ 1
2 0 0] 2 h = (2n + 1)/2 and (k 
= 0 XOR l 
= 0)

reasonable counting times thanks to a good enough signal-to-noise ratio. The expected
intensities for multipolar reflections are five orders of magnitude smaller than for standard
lattice ones. A typical lattice reflection, [2 2̄ 2], represents 4.5 × 105 counts s−1 at the peak’s
maximum. Thus, one could expect a few counts per second for a multipolar peak and the
positions retained were the ones with background level less than 3 counts s−1. Thereafter,
(θ, 2θ ) scans with long acquisition times were measured across these positions. Due to the
ω-extension of the Bragg reflections, this (θ, 2θ ) type of scan was chosen to improve the
contrast with respect to the background. Obviously, this does not allow a rigorous quantitative
analysis, but our main purpose was to check whether these reflections did or did not exist.
Some illustrative examples of these scans are given in figure 3 and their results are condensed
in table 4, where they can be compared with the predictions for the three models. The reported
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Figure 4. The thermal dependence of the [2 2̄ 5
2 ] multipolar reflection as observed through (θ, 2θ)

scans. Lorentzian fits, shown as full curves, are superimposed on the T = 21, 35 and 50.5 K data.

amplitudes (peak maximum) result from Lorentzian fits and are indicative of the reflection
intensities. It appears that the best agreement is obtained for model II for which the experiment
matches the prediction for 11 scans out of 13. Moreover, the unexpected reflections, [1 0 5

2 ]
and [2 0 5

2 ], are the weakest among the non-zero ones.
The temperature dependence of the [2 2̄ 5

2 ] reflection was measured starting from 21 K and
warming up to 80 K. In order to compensate for a possible discrepancy between the T = 21 K
orientation matrix and the lattice at higher temperatures, the position of the [2 2̄ 5

2 ] satellite
was checked prior to the measurements by centring the [2 2̄ 2] and [2 2̄ 3] reflections. The
corresponding scans are shown in figure 4. Considering the value T = 81 K of the ordering
temperature the intensity of the reflection drops rapidly when increasing the temperature.
Indeed, the reflection is almost zero at T = 50.5 K and cannot be distinguished from the
background at T = 65.6 K. A small shift of the T = 50.5 K peak maximum can be ascribed
to a deviation of the antiferromagnetic wavevector from the commensurate 〈 1

2 0 0〉 star. As
expected, no intensity is measured at T = 80.5 K, as one reaches the paramagnetic phase.

4. Discussion

This x-ray experiment has provided reliable evidence in favour of model II, proposed for the
TbMg low-temperature magnetic structure, even if this model does not reach 100% agreement
with the experiment. Some hypotheses may be put forward regarding the existence of two
([1 0 5

2 ] and [2 0 5
2 ]) unexpected reflections for model II:

(a) Magnetic x-ray scattering.
(b) A contamination by higher-order harmonics from the monochromator.
(c) An imperfect domain selection by the field provided by the magnetic circuit.
(d) A deviation of the structure from the high-symmetry model.

Hypothesis (a) can be ruled out easily as the intensities for reflections [1 0 5
2 ] and [2 0 5

2 ] are
only one order of magnitude smaller than the maximum intensity obtained for [2 2̄ 5

2 ]. Thus,
one would have to consider that these supposed magnetic reflections reach 10−6 times the
intensity of a standard lattice reflection. The strong amplitude of this off-resonance magnetic
scattering phenomenon would be totally unexplained. In the similar case of NdMg, our attempts
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Table 4. Semi-quantitative comparison between the multipolar Bragg reflection measurements
and the predictions for models I, II and III. The measured amplitudes are reported in units of
10−5 counts per detector/monitor, the uncertainty being ±0.1. ‘X’ indicates the existence of a
reflection (predicted or measured) and ‘—’ an extinction (a predicted extinction or no identifiable
experimental peak). The last line gives the ratio of coincidences with the experiment for the three
models.

[h k l] Amplitude Existence I II III

[2 2̄ 5
2 ] 3 X — X —

[0 0 5
2 ] <0.1 — — — —

[1 0 5
2 ] 0.35 X X — —

[0 1̄ 5
2 ] <0.1 — X — —

[2 0 5
2 ] 0.35 X X — —

[0 2̄ 5
2 ] <0.1 — X — —

[2 1̄ 5
2 ] 0.8 X X X —

[1 1̄ 3
2 ] 0.75 X — X —

[2 5̄
2 2] 2.2 X X X —

[1 5̄
2 3] 0.7 X X X —

[0 5̄
2 2] <0.1 — X — —

[ 5
2 0 2] <0.1 — — — X

[ 5
2 2̄ 2] <0.1 — — — X

Agreement ratio (%) 61.5 84.6 30.8

to measure a magnetic reflection, for counting times equivalent to the ones devoted to the
multipolar reflections, did not result in any deviation from the background [3].

At the ESRF BM2 beamline, the λ/2 contamination of the incident beam is less than 10−6

for the settings of the mirrors used. Moreover, the thermal dependence of the [2 2̄ 5
2 ] reflection

does not show any residual peak above 65.6 K. Therefore, hypothesis (b) cannot explain the
occurrence of the two ([1 0 5

2 ] and [2 0 5
2 ]) reflections.

As regards a possible interference of domains which survived the applied field,
hypothesis (c): it can be checked in table 2 that reflections like [1 0 5

2 ] and [2 0 5
2 ] are

incompatible with any domain associated with model II. Note that besides being expected for
model I, these two reflections may appear in relation with domains associated with model III.
In order to explain the occurrence of the two reflections [1 0 5

2 ] and [2 0 5
2 ], one would have

to reject model II in favour of model I or III, thus accepting many contradictions for the other
reflections tested.

It is difficult to find grounds for rejecting hypothesis (d). Indeed, to obtain a structure
complying with the high-symmetry criteria, one would need a perfect equilibrium between the
ferromagnetic and the antiferromagnetic components. This requires the antiferromagnetic and
ferromagnetic couplings to be of identical strength. If not, the magnetic system will tend to
favour the ferromagnetic component at the expense of the antiferromagnetic one. Despite the
anisotropy, the magnetic moments of model II should then slightly deviate from the twofold
directions (see figure 1). This deviation can be described by considering a canting angle
between the moment direction and the fourfold axis of the magnetization, which would tend
to 45◦ while decreasing the temperature and thus increasing the anisotropy. Such a thermal
dependence for the canting angle has been observed in GdMg [7].

This deviation from the high-symmetry model will result in the emergence of additional
multipolar components. At the quadrupolar level, if the magnetic moments stay in the same,
say x–y, plane, one will have to consider, in addition to 〈Pxy〉, the emergence of an 〈O2

2 〉
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component associated with the [0 0 1
2 ] wavevector. Obviously, the extinction rules defined for

model II would not apply strictly and the observation of weak additional reflections, such as
[1 0 5

2 ] and [2 0 5
2 ], could be expected.

The other mechanism which could give rise to weak charge satellites is the development
of an atomic displacement wave [15] related to the loss of the inversion symmetry. However,
this is unlikely to occur in a system for which the only definite antiferromagnetic wavevectors
belong to the 〈 1

2 0 0〉 star. Indeed, a phase shift is irrelevant for such a magnetic wave, as
well as for a ferromagnetic one. Thus, any magnetic structure based on such components is
centrosymmetric.

Another striking result of this x-ray study is the surprisingly rapid decrease of the [2 2̄ 5
2 ]

reflection on increasing the temperature. The main contribution to such a multipolar reflection
is the quadrupolar one. As quadrupoles develop, to a first approximation, like the square of the
magnetic moment, the intensity of a multipolar reflection should roughly behave as the fourth
power of the magnetic order parameter. This can explain the rapid fall of the intensity of a
multipolar reflection even at temperatures much lower than TC. However, this rapid thermal
variation may also reflect the existence of a second transition below TC, associated with the
emergence of the antiferromagnetic component. This would be consistent with the above
comments regarding the probable distortion of the canted structure with respect to the high-
symmetry model. Such a distortion is proof of an imbalance between the antiferromagnetic
〈 1

2 0 0〉 and ferromagnetic bilinear exchange couplings. Thus, in case of a second-order transi-
tion at TC, the stabilized structure should introduce only wavevectors which correspond to the
maximum, here ferromagnetic, exchange coupling. Moreover, at TC, the moment directions
should comply with the cubic anisotropy which favours threefold or fourfold axes but not the
twofold ones of model II. Thus, the antiferromagnetic component of model II could appear
only with the interference of a competing interaction term, which would compensate for the
increase of the bilinear exchange and anisotropy energies. The most serious candidates for
playing this role are the quadrupolar couplings. Like the quadrupolar x-ray scattering inten-
sity, the quadrupolar coupling energy term has a different thermal dependence to the bilinear
exchange one and becomes relevant for temperatures which can be substantially lower than TC.
Thus, the system may undergo a second transition within its magnetic order range. There is
no evidence that the transition at TC is first order and this scenario is likely to apply for TbMg.

Obviously, to rigorously resolve this question, one needs a more accurate study of the
thermal dependence of the 〈 1

2 0 0〉 reflections. This will be achieved in due course by means
of additional x-ray diffraction or magnetic neutron diffraction measurements.
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